
Learning Topic Models with Arbitrary Loss

Murat Apishev
great-mel@yandex.ru

Konstantin Vorontsov
k.v.vorontsov@phystech.edu

Lomonosov Moscow State University
Moscow Institute of Physics and Technology

April, 2020



Topic Modeling
Topic Modeling — an application of machine learning to statistical text
analysis.

Topic — a specific terminology of the subject area, the set of terms
(unigrams or n-grams) frequently appearing together in documents.

Topic model uncovers latent semantic structure of a text collection:
I topic t is a probability distribution p(w |t) over terms w ;

I document d is a probability distribution p(t|d) over topics t.

Applications — information retrieval for long-text queries, classification,
categorization, summarization of texts.



Topic Modeling Task
Given: W — set (vocabulary) of terms (unigrams or n−grams),

D — set (collection) of text documents d ⊂ W ,
ndw — how many times term w appears in document d .

Find: model p(w |d) =
∑︀
t∈T

𝜑wt𝜃td with parameters Φ
W×T

и Θ
T×D

:

𝜑wt=p(w |t) — term probabilities w in each topic t,
𝜃td =p(t|d) — topic probabilities t in each document d .

Criteria log-likelihood maximization:∑︁
d∈D

∑︁
w∈d

ndw ln
∑︁
t∈T

𝜑wt𝜃td → max
𝜑,𝜃

;

𝜑wt > 0;
∑︀

w 𝜑wt = 1; 𝜃td > 0;
∑︀

t 𝜃td = 1.



PLSA and EM-algorithm
Log-likelihood maximization:∑︁

d∈D

∑︁
w∈W

ndw ln
∑︁
t

𝜑wt𝜃td → max
Φ,Θ

;

EM-algorithm: the simple iteration method for the set of equations

E-шаг:

M-шаг:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ptdw = norm

t∈T
(𝜑wt𝜃td);

𝜑wt = norm
w∈W

(nwt), nwt =
∑︀
d∈D

ndwptdw ;

𝜃td = norm
t∈T

(ntd), ntd =
∑︀
w∈d

ndwptdw ;

where norm
i∈I

xi =
max{xi ,0}∑︀

j∈I
max{xj ,0} .



EM-algorithm for ARTM
Log-likelihood maximization with additive regularization criterion R :∑︁

d∈D

∑︁
w∈W

ndw ln
∑︁
t

𝜑wt𝜃td + R(Φ,Θ) → max
Φ,Θ

;

EM-algorithm: the simple iteration method for the set of equations

E-step:

M-step:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ptdw = norm
t∈T

(𝜑wt𝜃td);

𝜑wt = norm
w∈W

(︁
nwt + 𝜑wt

𝜕R
𝜕𝜑wt

)︁
, nwt =

∑︀
d∈D

ndwptdw ;

𝜃td = norm
t∈T

(︁
ntd + 𝜃td

𝜕R
𝜕𝜃td

)︁
, ntd =

∑︀
w∈d

ndwptdw .



Phi sparsification and decorrelation
Two examples of regularizers:

I LDA-style smoothing/sparsifying Φ with given positive/negative
values 𝛽wt :

R(Φ) =
∑︁
t∈T

∑︁
w∈W

𝛽wt ln𝜑wt ;

I Topic decorrelation, that makes topics as diverse as possible:

R(Φ) = −𝜏

2

∑︁
t∈T

∑︁
s∈T∖t

∑︁
w∈W

𝜑wt𝜑ws .



EM-algorithm with arbitrary loss
Replace the logarithm in the standard log-likelihood loss ln p(w |d) with
a smooth function ℓ:∑︁

d∈D

∑︁
w∈d

ndw ℓ
(︁∑︁
t∈T

𝜑wt𝜃td

)︁
+ R(Φ,Θ) → max

Φ,Θ
; (1)

∑︁
w∈W

𝜑wt = 1, 𝜑wt > 0;
∑︁
t∈T

𝜃td = 1, 𝜃td > 0. (2)



EM-algorithm with arbitrary loss

Theorem
The local maximum (Φ,Θ) of the optimization problem (1), (2) with
differentiable loss ℓ and differentiable regularizer R satisfies the system of
M-step equations

𝜑wt = norm
w∈W

(︂
nwt+𝜑wt

𝜕R

𝜕𝜑wt

)︂
; nwt =

∑︁
d∈D

ndwptdw ;

𝜃td = norm
t∈T

(︂
ntd+𝜃td

𝜕R

𝜕𝜃td

)︂
; ntd =

∑︁
w∈d

ndwptdw ;

and the E-step equation

ptdw = 𝜑wt𝜃tdℓ
′
(︂∑︁

t∈T
𝜑wt𝜃td

)︂
.



Special case: fast E-steps
The simplest function ℓ(p) = p gives a new optimization problem:∑︁

d∈D
nd⟨p̂(w |d), p(w |d)⟩+ R(Φ,Θ) → max

Φ,Θ
;

In this case E-step equation is computed without normalization

ptdw = 𝜑wt𝜃td .

As such modification allows a significant speed-up, we call it a fast E-step.



BigARTM library
Features:
I Fast parallel and online processing of Big Data;
I Multimodal and regularized topic modeling;
I Built-in library of regularizers and quality measures.

Community:
I Open-source https://github.com/bigartm;
I Documentation http://bigartm.org.

License and programming environment:
I Freely available for commercial usage (BSD 3-Clause license);
I Cross-platform — Windows, Linux, Mac OS X (32 bit, 64 bit);
I Programming APIs: command line, C++, Python.

https://github.com/bigartm
http://bigartm.org


Offline and online EM-algorithms
Offline algorithm:

I performs several passes through collection;
I while processing E-step for each document collects nwt counters;
I at the end of each pass proceeds M-step: uses final nwt values to construct new Φ.

Online algorithm:
I performs one pass through collection;
I collects nwt counters for a batch of documents;
I performs M-step after processing of a given number of batches;
I processes next generation of batches with new version of Φ.

Asynchronous online algorithm:
I performs M-step for results of old batches generation processing in parallel with

E-step for new generation;
I achieves better likelihood than offline or synchronous online do in a given time

interval.



BigARTM optimization for sparse models
BigARTM generally stores four types of big matrices:

I document-topic matrix Θ;
I topic-term matrix Φ;
I topic-term counters matrix nwt ;
I topic-term regularization amendments matrix rwt .

Usually we don’t store Θ matrix, as it has O(|D|) size.

Other three matrices are stored in the same structure called Φ-like matrix.



BigARTM optimization for sparse models
Current state:

I BigARTM uses dense real-valued matrices to store Φ-like matrices;

I for each term w the corresponding values are located in memory as a
single continuous block;

I the memory can be accessed in a locally sequential way while
processing loops over a set of topics;

I BUT: in case of sparse model calculations for most of the elements will
be wasted as they are zero.



BigARTM optimization for sparse models
Proposed hybrid format:

I each line (an array S of length m) can be stored in one of two forms,
either sparse or dense;

I form depends on the number k of non-zero elements in S ;

I in dense form S is stored as before (continuous memory block);

I in sparse form it is stored in three arrays:
I V — real-valued array with all k non-zero elements of S in the original

order;
I I — integer array, stores for each element of V its index in the original

array;
I M — bitmap with length m (M[i ] == 1 if S [i ] > 0).



BigARTM optimization for sparse models
Proposed hybrid format:

I in sparse form it is stored in three arrays:
I V — real-valued array with all k non-zero elements of S in the original

order;
I I — integer array, stores for each element of V its index in the original

array;
I M — bitmap with length m (M[i ] is 1 if S [i ] > 0).

We need:

I V to store non-zero elements;

I M to organize effective (O(1)) random access to zero elements of S ;

I I to proceed a loop over non-zero elements of S and to allow
O(log(k)) access to them.



Dataset and quality measures
Dataset: subset of English Wikipedia:
I 200K documents for offline algorithm;
I 1M documents for online algorithms;
I 100K terms in dictionary in both cases.

Quality measures:
I Perplexity is an inverse of the likelihood of data, (the smaller — the better):

𝒫(Φ,Θ) = exp

(︂
−1
n

∑︁
d∈D

∑︁
w∈d

ndw ln p(w |d)
)︂
;

I Coherence of a topic t is the average PPMI over term pairs:

𝒞t(Φ) =
2

k(k − 1)

k−1∑︁
i=1

k∑︁
j=i+1

PPMI(wi ,wj).

Average coherence over topics is a good interpretability measure
(the greater — the better).



Experiment 1
Check the benefits of BigARTM optimization for sparse models

Compare three models:

Features / model type 1 2 3
Enabled optimization No No Yes
Uniform sparsification No Yes Yes

Quality measures:
I training time;
I peak memory consumption.

Experimental parameters:
I model type;
I number of topics (100/500/1000/2000);
I number of document passes during one collection pass (1/5/10/15).



Experiment 1: results
I Offline algorithm

I No improvements from optimization for 100 topics or 1 document pass;
I In other cases model 3 is faster than 1 (up to 30% acceleration);
I Model 1 has lowest memory consumption.

I Online algorithm
I No improvements from optimization for 100 topics or 1 document pass;
I In other cases model 3 is faster than 1 (up to 30% acceleration);
I Models 1 and 3 have the same memory consumption.

I Asynchronous online algorithm
I In all cases model 3 is faster than 1 (up to 30% acceleration);
I In all cases model 3 consumes less memory than 1 (up to 23% economy).



Experiment 2
Check the benefits of combining normal and fast E-steps while training one model.

Training strategies to compare:

I FULL: all iterations are normal;

I NONE: all iterations are fast;

I MIXED: fast and normal iterations alternate;

I HALF: the first half of the iterations is fast, the second is the usual one;

I LAST: 80% of the first iterations are fast, the rest are the usual ones;

I SPARSE: FULL model with uniform sparsification;

I DECOR: FULL model with topic decorrelation.

Iteration for offline algorithm is a collection pass, for online — document pass.



Experiment 2
Quality measures:
I training time;
I perplexity;
I average coherence.

Experimental parameters:
I training strategy;
I number of topics (100/500/1000/2000);
I model updates frequency for online algorithms in number of processed

batches (32/24/16/8).

Additional measuring for offline:
perplexity and coherence values on minimal time across all strategies.



Experiment 2: offline algorithm results

I DECOR strategy

I is the best choice in case of model with 100 topics;
I fails for larger models due to computation complexity.

I NONE strategy is the fastest one, and also improves coherence, but it
spoils perplexity very much;

I HALF strategy is an optimal choice both in case of

I fixed number of iterations;
I score values on minimal time;

anyway it saves or even decreases final perplexity value and achieves up
to 10% coherence growth compared to base FULL case.



Experiment 2: online algorithm results

I DECOR strategy

I is the best solution for a model with 100 topics;
I fails for larger models.

I NONE/HALF/MIXED/LAST strategies with the same frequency of
model updates

I reduce train time by 25-50%;
I spoil both perplexity and coherence significantly.

I HALF with more frequent updates allows

I a big (up to 23%) improvement of the perplexity;
I to achieve same time and coherence values or their minor decay.



Experiment 2: asynchronous online algorithm results
I DECOR strategy

I is the best solution for a model with 100 and 500 topics;
I too slow for models with 1000 and 2000 topics.

I NONE/HALF/MIXED/LAST strategies with the same frequency of model updates

I reduce train time significantly (up to 2 times);
I spoil both perplexity and coherence significantly.

I HALF strategy with more frequent model updates is a best strategy for models with
1000 and 2000 topics, as it

I allows to get more than twice the gain in perplexity;
I gives coherence losses within 10%;
I in all cases remains faster than the basic algorithm by 10-30%.

I SPARSE strategy in some cases

I allows to obtain comparable results with HALF strategy;
I works even faster than HALF due to optimization for sparse models.



Conclusions

I We generalized the EM-algorithm for any differentiable loss function in
an optimized functional when training topic models;

I We found experimentally the superior strategy for combining normal
and fast E-steps;

I We proposed efficient optimization for sparse models;

I We discovered some new properties of the topic decorrelation.

I The future work includes:
I study of regularizers and mixing E-step strategies combinations;
I studying loss functions, other than linear and logarithmic ones.


